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Prototype for the study of weakly bound projectiles colliding on stable targets, the scattering of
deuterium (d) on 4He (α) is an important milestone in the search for a fundamental understanding
of low-energy reactions. At the same time, it is also important for its role in the Big-bang nucle-
osynthesis of 6Li and applications in the characterization of deuterium impurities in materials. We
present the first ab initio study of the 6Li ground state and d-4He elastic scattering using two- and
three-nucleon forces derived within the framework of chiral effective field theory. The six-nucleon
bound-state and scattering observables are calculated by means of the no-core shell model with con-
tinuum and are compared to available experimental data. We analyze the influence of the dynamic
polarization of the deuterium and of the chiral three-nucleon force, and examine the role of the
continuum degrees of freedom in shaping the low-lying spectrum of 6Li. We find that the adopted
Hamiltonian overderbinds 6Li by 15 KeV and overestimates the excitation energy of the first 3+

state by 340 KeV. The bulk of the computed differential cross section is in good agreement with
data and the three-nucleon force plays an essential role in the zero-energy limit.

PACS numbers: 21.60.De, 24.10.Cn, 25.40.Ny, 27.20.+n

Introduction. Lithium-6 (6Li) is a weakly-bound sta-
ble nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1].
Until now out of reach of ab initio techniques, a complete
unified treatment of the bound and continuum proper-
ties of this system is desirable to further our understand-
ing of the fundamental interactions among nucleons, but
also to inform the evaluation of low-energy cross sec-
tions relevant to applications. Notable examples are the
2H(α, γ)6Li radiative capture (responsible for the Big-
bang nucleosynthesis of 6Li) and the 2H(α, d)4He cross
section used in the characterization of deuteron concen-
trations in thin films. Well known experimentally, the
low-lying resonances of 6Li have been shown to present
significant sensitivity to three-nucleon (3N) interactions
in ab initio (i.e., from first principles) calculations that
treated them as bound states [2–4]. However, this ap-
proximation is well justified only for the narrow 3+ first
excited state, and no information about the widths was
provided. At the same time, the only ab initio study of d-
4He scattering [5] was based on a nucleon-nucleon (NN)
Hamiltonian and did not take into account the swelling
of the α particle due to the interaction with the deuteron.

As demonstrated in a study of the unbound 7He nu-
cleus, the ab initio no-core shell model with continuum
(NCSMC) [6, 7] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially de-
veloped to compute nucleon-nucleus collisions starting
from a two-body Hamiltonian, this technique has been
later extended to include 3N forces and successfully ap-
plied to make predictions of elastic scattering and recoil
of protons off 4He [8] and to study continuum and 3N -
force effects on the energy levels of 9Be [9]. We have now

developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions, and as a first appli-
cation, we present in this Letter a study of the 6Li ground
state (g.s.) and d-4He elastic scattering using NN + 3N
forces derived within the framework of chiral effective
field theory.
Approach. We cast the microscopic ansatz for the 6Li

wave function in the form of a generalized cluster expan-
sion

|ΨJπT 〉=
∑
λ

cλ|6LiλJπT 〉+
∑∫
ν

dr r2
γν(r)

r
Aν |ΦJ

πT
νr 〉 , (1)

where J, π and T are respectively total angular momen-
tum, parity and isospin, |6LiλJπT 〉 represent square-
integrable energy eigenstates of the 6Li system, and

|ΦJ
πT
νr 〉=

[(
|4HeλαJ

πα
α Tα〉|2HλdJ

πd
d Td〉

)(sT )
Y`(r̂α,d)

](JπT )

× δ(r − rα,d)
rrα,d

(2)

are continuous basis states built from a 4He and a 2H nu-
clei whose centers of mass are separated by the relative
coordinate ~rα,d, and that are moving in a 2s+1`J partial
wave of relative motion. The translationally-invariant
compound, target and projectile states (with energy la-
bels λ, λα and λd, respectively) are all obtained by means
of the no-core shell model (NCSM) [10–12] using a basis
of many-body harmonic oscillator (HO) wave functions
with frequency ~Ω and up to Nmax HO quanta above
the lowest energy configuration. The index ν collects the
quantum numbers {4HeλαJ

πα
α Tα; 2HλdJ

πd
d Td; s`} asso-

ciated with the continuous basis states of Eq. (2), and
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and ~Ω = 20 MeV, obtained including
fifteen square-integrable 6Li eigenstates, as a function of the
number of 2H states (up to seven) in the 3S1−3D1, 3D2 and
3D3−3G3 channels. The two-body part of the SRG-evolved
N3LO NN potential (NN -only) with Λ = 2.0 fm−1 was used.

the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(
1−

4∑
i=1

6∑
j=5

Pi,j +

4∑
i<j=1

Pi,5Pj,6

)
,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and the continuous amplitudes
of relative motion, γν(r) are obtained by solving the six-
body Schrödinger equation in the Hilbert space spanned
by the basis states |6LiλJπT 〉 and Aν |ΦJ

πT
νr 〉 [6, 7]. The

elements of the scattering matrix are then obtained from
matching the solutions of Eq. (1) with the known asymp-
totic behavior of the wave function using an extension of
the microscopic R-matrix theory [13, 14].

The deuteron is only bound by 2.224 MeV. For relative
kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of 2H
in the 3S1−3D1, 3D2 and 3D3−3G3 channels identified in
our earlier study of Ref. [5]. At the same time, the cou-
pling of fifteen (among which two 1+, two 2+, and one
3+) square-integrable six-body eigenstates of the com-
posite system also contribute to the description of the
deuteron distortion. More importantly, they address the
swelling of the α particle [8], of which we only include the
g.s. in Eq. (2). The typical convergence behavior of our
computed d-4He phase shifts with respect to the number
of deuteron pseudostates (or d?, with Ed?>0) included
in Eq. (2) is shown in Fig. 1. Stable results are found
with as little as three deuteron states per channel. This

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N -force matrix el-
ements between basis states
of Eq. (2).

is a strong reduction of the d? influence with respect to
the more limited study of Ref. [5], lacking the coupling
of square-integrable 6Li eigenstates. Nonetheless, above
the 2H breakup threshold, our approach is approximated
and a rigorous treatment would require the more compli-
cated task of including three-cluster basis states [15] in
the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to 〈ΦJπTν′r′ |P3,5P4,6V

3N
123 |ΦJ

πT
νr 〉, with V 3N

123 the
3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed
and stored in a factorized form [5, 16]. An additional
difficulty, already mentioned in Ref. [16], involves the ex-
orbitant number of input 3N force matrix elements (see
Fig. 1 of Ref. [17]), which we have to limit by specifying a
maximum three-nucleon HO model space size E3max. To
minimize the effects of such truncation we have included
3N -force matrix elements up to E3max = 17. Finally, the
contribution of the 3N forces to the coupling between
the discrete and continuous portion of our basis is com-
putationally less demanding and decomposes into the two
terms 〈6LiλJπT |V 3N

346 |ΦJ
πT
νr 〉 and 〈6LiλJπT |V 3N

456 |ΦJ
πT
νr 〉.

Results. We adopt a Hamiltonian based on the chiral
N3LO NN interaction of Ref. [20] and N2LO 3N force of
Ref. [21], constrained to provide an accurate description
of the A=2 and 3 [22] systems. These interactions are ad-
ditionally softened by means of a unitary transformation
that decouples high- and low-momentum components of
the Hamiltonian, working within the similarity renormal-
ization group (SRG) method [23–26]. To minimize the
occurrence of induced four-nucleon forces, we work with
the SRG momentum scale Λ = 2.0 fm−1 [16, 25, 26]. All
calculations are carried out using the ansatz of Eq. (1)
with fifteen discrete eigenstates of the 6Li system and
continuous d-4He(g.s.) binary-cluster states with up to
seven deuteron pseudostates in the 3S1−3D1, 3D2 and
3D3−3G3 channels. Similar to our earlier study of d-4He
scattering [5] [which was performed with a softer NN in-
teraction but in a model space spanned only by the con-
tinuous basis states of Eq. (2)], we approach convergence
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FIG. 3. (Color online) S- and D-wave d-4He phase shifts com-
puted with the NN -only, NN+3N -ind and NN+3N Hamil-
tonians (lines) compared to those extracted from R-matrix
analyses of data [18, 19] (symbols). More details in the text.

for the HO expansions at Nmax = 11. For the HO fre-
quency we adopt the value of 20 MeV around which the
6Li g.s. energy calculated within the square-integrable
basis of the NCSM becomes nearly insensitive to ~Ω [4].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present
in the chiral Hamiltonian (NN+3N). In Fig. 3 we com-
pare our computed d-4He S- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [18, 19].
The results based on the two-body part of the evolved
NN force (NN -only) compare well with those of Ref. [5]
(obtained with a softer potential) and, except for the
splitting between the 3D3 and 3D2 resonances, with ex-
periment. Once the SRG unitary equivalence is restored
via the induced 3N force, the resonance centroids are sys-
tematically shifted to higher energies. By contrast, the
agreement with data is much improved in the NN+3N
case and, in particular, the splitting between the 3D3 and
3D2 partial waves is comparable to the measured one.

TABLE I. Absolute g.s. energies of 6Li using the NN + 3N -
ind and NN + 3N Hamiltonians compared to experiment.
The error estimates quoted in the extrapolated NCSM re-
sults include uncertainties due to the SRG evolution of the
Hamiltonian and ~Ω dependence [4].

Eg.s. [MeV] NN + 3N -ind NN + 3N

NCSM (Nmax = 10) -26.56 -30.84

NCSM (Nmax = 12) -27.27 -31.52

NCSM (extrapolation [28]) -28.0(3) -32.2(3)

NCSMC (Nmax = 10) -28.17 -32.01

Expt. [1, 29] -31.99
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FIG. 4. (Color online) Ground-state energy and low-lying 6Li
positive-parity T = 0 resonance parameters extracted [27]
from the phase shifts of Fig. 3 (NCSMC) compared to the
evaluated centroids and widths (indicated by Γ) of Ref. [1]
(Expt.). Also shown on the left-hand-side are the best
(Nmax = 12) and extrapolated [28] NCSM energy levels. The
zero energy is set to the respective computed (experimen-
tal) d+4He breakup thresholds. Absolute g.s. energies can be
found in Table I.

In Fig. 4, the resonance centroids and widths ex-
tracted [27] from the scattering phase shifts of Fig. 3
(shown on the right) are compared with experiment as
well as with more traditional approximated energy levels
(shown on the left) obtained within the NCSM by treat-
ing the 6Li excited states as bound states. In terms of ex-
citation energies relative to the g.s., in both calculations
(i.e., with or without continuum effects) the chiral 3N
force affects mainly the splitting between the 3+ and 2+

states, and to a lesser extent the position of the first ex-
cited state. Sensitivity to the chiral 3N force is also seen
in the widths of the NCSMC resonances, which tend to
become narrower (in closer agreement with experiment)
when this force is present in the initial Hamiltonian.
Overall, the closest agreement with the observed spec-
trum is obtained with the NN+3N Hamiltonian work-
ing within the NCSMC, i.e. by including the continuum
degrees of freedom. Compared to the best (Nmax = 12)
NCSM values, all resonances are shifted to lower ener-
gies commensurately with their distance from the d+4He
breakup threshold. For the 3+, which is a narrow res-
onance, the effect is not sufficient to correct the slight
overestimation in excitation energy already observed in
the NCSM calculation. This and the ensuing underes-
timation of the splitting between the 2+ and 3+ states
point to remaining deficiencies in the adopted 3N force
model, particularly concerning the strength of the spin-
orbit interaction.

As highlighted in Fig. 4, the inclusion of the d+4He
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [30–36]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions at
Ed = 2.93, 6.96, 8.97 [37], and 12 MeV [38] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-parity
partial waves up to J = 3 were included in the calculations.

binary-cluster states of Eq. (2) results also in additional
binding for the 1+ ground state. This can be understood
as stemming from a more efficient description of the clus-
terization of 6Li into a deuteron and an α particle at
long distances, which is harder to describe within a finite
HO model space, or – more simply – from the increased
size of the many-body model space. Indeed, as shown in
Fig. 4 and in Table I for the absolute value of the 6Li
g.s. energy, extrapolating to Nmax → ∞ [28] brings the
NCSM results in good agreement with the NCSMC, par-
ticularly for bound states and narrow resonances. How-
ever, while the extrapolation procedure yields compara-
ble energies, only the NCSMC wave functions present
the correct asymptotic, which for the g.s. is a Whittaker
function. This will be essential for the description of
the 2H(α, γ)6Li radiative capture. Further, based on the
extrapolated NCSM energies, one could erroneously con-
clude that the measured splitting between 2+ and 3+

state is reproduced with theNN+3N Hamiltonian. Con-
versely, the square-integrable |6LiλJπT 〉 components of
the ansatz (1) are essential for achieving an efficient de-
scription of the short-range six-body correlations, and
address the polarization of the 4He core. Describing such
correlations exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Figs. 5(a) and 5(b), respectively, we compare
the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian in the largest
model space (Nmax = 11) to the measured energy spec-
tra of Refs. [30–36]. Aside from the position of the 3+

resonance, the calculations are in fair agreement with
experiment, particularly in the low-energy region of in-
terest for the Big-bang nucleosynthesis of 6Li, where we
reproduce the data of Besenbacher et al. [30] and those

of Quillet et al. [34]. The 500 KeV region below the reso-
nance in Fig. 5(a) is also important for material science,
where the elastic recoil of deuterium knocked by inci-
dent α particles is used to analyze the presence of this
element. At higher energies, near the 2+ and 1+ reso-
nances, the computed cross section at the center-of-mass
deuteron scattering angle of θd = 164◦ reproduces the
data of Galonsky et al. [35] and Mani et al. [36], while
we find slight disagreement with the data of Ref. [31]
in the elastic recoil configuration at the laboratory an-
gle of ϕd = 30◦. At even higher energies, the measured
cross section of Fig. 5(b) lies below the calculated one.
This is due in part to the overestimated width of the
1+2 state, which is twice as large as in experiment. At
the same time, higher partial waves (J > 3) not consid-
ered here (the accurate calculation of which would require
3N -force matrix elements beyond E3max = 17), become
somewhat more important at these energies. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of deuteron
incident energies. In particular, the theoretical curves re-
produce the data at Ed = 2.93 and 6.96 MeV, while some
deviations are visible at the two higher energies, in line
with our previous discussion. Nevertheless, in general the
present results including 3N forces provide a much more
realistic description of the scattering process than our
earlier study of Ref. [5]. Finally, while an Nmax = 13 cal-
culation (currently out of reach) may change the present
picture somewhat, we expect that the differences with
respect to the present results would not be substantial,
particularly concerning the description of the narrow 3+

resonance. Indeed, much as in the case of the g.s. energy,
here the NCSMC centroid is in good agreement with the
NCSM extrapolated value, 0.99(9) MeV.
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Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
340 keV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab initio
study of the 2H(α, γ)6Li radiative capture, and is a step-
ping stone in the calculation of the deuterium-tritium
fusion with the chiral NN + 3N Hamiltonian, currently
in progress.
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[7] S. Baroni, P. Navrátil, and S. Quaglioni, Phys. Rev. C
87, 034326 (2013).

[8] G. Hupin, S. Quaglioni, and P. Navrátil, ArXiv (2014),
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